
I,,(. J. Heat Mprs Transfir. Vol. 29, No. 3, pp. 439449, 1986 
Printed in Great Britain 

0017~9310/86$3.00+0.00 
Pergamon Press Ltd. 

Numerical study of two-dimensional natural 
convection in a horizontal fluid layer heated from 

below, by finite-element method: influence of 
Prandtl number 

HENRI BERTIN and HIROYUKI OZOE 
Department of Industrial and Mechanical Engineering, Okayama University, Tsushima, Okayama 700, 

Japan 

(Received 26 June 1985 and in final form 23 August 1985) 

Abstract-Natural convection in a two-dimensional horizontal fluid layer heated from below and cooled from 
above was computed by a finite-element method using a Galerkin approach. In the case of Pr = 10 the Nusselt 
number, obtained by an extrapolation to zero element size, agreed well with the experimental data of Silveston 
[For&. Ing. 24,59-69 (1958)], for a range of Rayleigh numbers from the critical value up to 25,000. For the 
Prandtl numbers varying from 0.001 to 1000, steady-state solutions for convection, heat transfer rates and the 
critical Rayleigh numbers were computed. A correlating equation for critical Rayleigh number as a function of 
Prandtl number was proposed. Using the correlating equation of Malkus and Veronis [J. Fluid Me&. 4,225 
260 (1958)], it was possible to compute the heat transfer rate near the critical state, for every Prandtl number 

higher than 0.001. 

1, INTRODUCTION 

AFTER the works by Btnard and Rayleigh, there are 
many studies dealing with the critical condition for the 
onset of instability in an horizontal layer of fluid of 
infinite extent heated from below. 

The widthoftherollcellin aninfinitehorizontalfluid 
layer between two rigid walls, heated from below and 
cooled from above has been studied by a number of 
papers [I]. However, there appears to be no definitive 
agreement on the stable width of a roll cell. Linear 
stability analysis at infinite Prandtl number suggests 
the critical wave number a, = 3.117, which indicates a 
square roll cell. Ozoe et al. [2] reported numerical 
calculations with various roll widths but no definitive 
conclusion can be drawn on the stable width of a roll 
cell. In accordance with experimental observations [3] 
the motion of fluid, just above the critical state, is 
postulated to be a series of identical square roll cells 
with parallel axes. In that case, the theoretical value for 
the critical Rayleigh number is 1707.8. 

When thePrandtlnumberbecomeslow,lessthanO.l, 
say, the non-linear inertial terms can not be neglected. 
In that case, natural convection is known to depend on 
the Prandtl number, Pr, as well as on the Rayleigh 
number, Ra. There have been only a few experimental 
investigations dealing with the determination of the 
critical Rayleigh number Ra, for low Prandtl number. 
Such low values occur only for liquid metals such as 
mercury (Pr = 0.025) and sodium, and in astrophysical 
applications. Experiments with these fluids are very 
difficult to perform, but some results are available for 
mercury. Verhoeven [4] determined a value of 1808 
+ 16 for the critical Rayleigh number of mercury in a 
cylinder. Soberman [ 5 J observed critical Rayleigh 
numbers as high as 2000 and as low as 1200 for mercury. 

For the dependence of the critical Rayleigh number 
on the Prandtl number, Samels and Churchill 
[6] developed finite-difference solutions for two- 
dimensional natural convection in long, rectangular 
channels heated from below. Their computed results 
indicate a dependence on Pr for Pr less than 0.1, and 
their plots of the Nusselt number Nu vs Ra for different 
Pr extrapolate to different values of Ra,. Chao et al. 
[7] carried out finite-difference computations for the 
dependence of the critical Rayleigh number on the 
Prandtl number and correlated their results with 
the expression 

Ra E = 1707.8[1 +(0.00717/Pr)5/3]3/s. (1) 

In the present work, the finite-element method was 
used to compute natural convection in a horizontal, 
infinite layer of fluid heated from below and cooled 
from above. First, the rate of heat transfer was in- 
vestigated for the Rayleigh numbers up to 25 000 with 
a Prandtl number of 10, and then the influence of the 
Prandtl number over the range of 0.001 to 1000, on the 
critical Rayleigh number. 

2. MATHEMATICAL MODEL 

An infinitely long, two-dimensional roll cell with a 
square cross section [3], was postulated, as shown in 
Fig. 1. The equations for the conservation of mass, 
momentum and energy were accordingly expressed as 

au+!?!=0 
ax ay 

.;+“$=($)g+v($+$) (3) 
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NOMENCLATURE 

critical wave number 
matrix (N x N) 
matrix (N x N) 
constant (Malkus and Veronis 
equation) 
RHS vector 
exponent (correlating equation) 
constant (correlating equation) 
specific heat 
Grashof number, Ra/Pr 
acceleration due to gravity 
height and width of roll cell 
thermal conductivity 

u velocity in x-direction 
u dimensionless velocity 
V velocity in y-direction 
V dimensionless velocity 
X horizontal coordinate 
X dimensionless coordinate 

Y vertical coordinate 
Y dimensionless coordinate. 

Greek symbols 
thermal diffusivity 

; thermal coefficient expansion 
6e triangular element 

Ll, L2, L3 interpolating functions 
NU Nusselt number 
N total number of node points 

IN11 cardinal basis 
{Nl}’ transpose of {Nl} 
n exponent (correlating equation) 
P pressure 
Pr Prandtl number, v/u 

area of element 6e 
temperature difference, T, 
grid size 
viscosity 
kinematic viscosity 
density 
density at To 
temperature perturbation 

G 

Ra Rayleigh number * dimensionless streamfunction 

Ra, critical Rayleigh number @ dimensionless temperature 
T temperature R dimensionless vorticity. 

&,(u~+v$)=k($+$). (5) 

The well-known Boussinesq approximation is 
employed, i.e. that physical properties are constant 
except for the density p in the buoyancy term, which is 
assumed to vary with temperature only according to 

PO 
= l+B(T-To) 

(6) 

x r 
2 us v=o 

lX=H 
1 
I 
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‘Y=H 

u=v=o 

FIG. 1. Physical geometry and boundary conditions. 

where 

is the coefficient for thermal expansion. 
Taking the cross derivatives of the two equations of 

motion and subtracting to eliminate the pressure term, 
then, after dedimensionalizing, introducing the stream- 
function and vorticity gives 

(8) 

Here @, a, U, V, X and Y are the non- 
dimensionalized values for temperature, vorticity and 
components of the velocity, and X and Y are the 
coordinates. 

Also 

where I(/ is the streamfunction 

u = a$/ar and v= -a+/ax 
also 

(11) 

Pr = v/a (Prandtl number) 

Ra = C,ptH3g/?AT/pk (Rayleigh number) 

(12) 

(13) 
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CD = (T- T,)/AT, T, = (Tr + T,)/2. (14) 

The revised boundary conditions are 

x=0,1: *=n=o; aqax=o (15) 
Y=O: $=o; n= -au/au; m= -i/2 (16) 

Y= 1: i+b =o; R= -au/au; Q= i/2. (17) 

The vorticity on the wall can be computed from the 
streamfunction as follows : 

n= -au/au= -a2*jay2. W3) 
For a low Prandtl number, the temperature profile is 

expected to be nearly linear. Therefore the temperature 
can be assumed to be the sum of a conduction term and 
a perturbation term as per Chandrasekhar [l] : 

where 

DC = Y -0.5 (profile due to conduction only) (20) 

and 0 is a perturbation of the temperature from the state 
of pure conduction. 

Next an equation employed by Chao et al. [7] was 
used to study the influence of a low Prandtl number. 
The perturbation for temperature yields the following 
set of equations : 

center of each element. Their results were limited to 
Rayleigh numbers less than 3000 for the horizontal 
configuration. 

Since equations (8) and (9) are nonlinear, an exact 
variational formulation corresponding to this kind of 
equation is not possible. 

There are several possible methods of solving these 
equations. The popular schemes are those of the 
weighted residuals with least squares, collocation 
method and the Galerkin method. Ikenouchi et al. [lo] 
used the Galerkin method to solve the Navier-Stokes 
equations, and more recently Moult et al. [ 1 l] solved 
several two-dimensional steady flow problems by the 
Galerkin method. 

3.1. Method of weighted residuals 
The Galerkin approach was used in the present 

investigation. Detailed explanations of the use of this 
method in fluid mechanics are given in books such as 
Zienkiewicz [ 121, Chung [ 131 and Baker [ 143. 

3.2. Energy equation 
Equation (8) yields the following Galerkin integral : 

a32 a32 
-+,=Ug+Vg+Grg (22) 
ax2 

where Gr = RaJPr, is the Grashof number. 
However, this formulation did not yield a convergent 

result for Pr less than 0.01 and a formulation which 
yielded the following alternative set of equations was 
employed : 

The boundary conditions on the perturbation of the 
temperature correspond to no perturbation on the wall, 
i.e. 

Y=O, l+Q=O. (25) 

3. FINITE-ELEMENT FORMULATION 

Most of the investigations of convection with the 
finite-element method deal with two-dimensional 
motion in a rectangular channel heated on one vertical 
wall and cooled on the opposing wall. As a first try, 
the equations (8) and (9) were interpreted as Poisson 
equations after Tabarrok and Lin [S] for the vertical 
configuration, and Ozoe et al. [9] for the horizontal 
one. Both of these investigations used a variational 
method to solve the problem with the convective term 
being approximated by its value at the gravitational 

+Y; dXdY=O (26) 
) 

where { W(X, Y)} is a complete, linearly independent set 
of weighting functions. 

The temperature, vorticity and streamfunction can 
be approximated as the product of a shape function and 
the nodal values : 

@(X9 Y) = {WX Y)}‘pqe (27) 

WX, r) = W(X, r)}‘{Q>, (28) 

1L(X, Y) = W(X, Y)W). (29) 

where {Nl(X, Y)} is a (1 x 3) row matrix of the 
interpolating function for each triangular element 
(shape function). {Q},, {Q}, and ($}, are the values of 
the temperature, vorticity and streamfunction at the 
vertices of the element. 

The details of the calculation and derivation of 
the shape functions {Nl(X, Y)} can be found in 
Zienkiewicz [12] and Baker [14]. 

It is possible to substitute the set of shape functions 
for the set of weight functions in the Galerkin integral of 
equation (26) 

+l’g dXdY=O (30) 
> 



442 H. BERTIN and H. OZOE 

The Green-Gauss theorem is used to transform the 
second derivatives : 

3.3. Equation for vorticity transport 
The same method is used for the vorticity transport 

equation as for the energy equation. 
The temperature gradient in the equations (9), (22) 

or (24) is considered as a constant in every step. In 
consequence, a linear system is obtained 

C4PI = (4 (36) 

where {B} on the RHS is a function of the temperature 
gradient. 

ss ae 
{Nl(X, Y)} $ dX dY 

d{Nl(X, Y)} a@ 
=-- 

ax 
=dXdY 

+ 
i 0 

{Nl(X,Y)} g de. (31) 

The boundary conditions (@ = constant or aa/ 
aX = 0), require the second integral of the RHS to 
vanish identically on the boundaries. In consequence, 
the Galerkin integral becomes 

x dX dY = {O}. (32) 

The values of U and V are considered to be constant 
on each element. Of course it is possible to consider the 
velocity components in terms of the streamfunction, 
but that requires the solution of a nonlinear system. 
In consequence, schemes such as that of Newton and 
Raphson, which makes the solution scheme much more 
complicated, are required. 

Consider one term of the Galerkin integral : 

=U 

ss 
{Nl) 

de 
F {@},dX dY (33) 

{Nl(X, Y)}isa(l x 3)rowmatrix,a{Nl(X, Y)}*/aXisa 
(3 x 1) line matrix and the product is a (3 x 3) square 
matrix. 

4. FINITE-ELEMENT ALGORITHM 

The square cross-section of the roll cell is divided into 
a number of triangles as shown in Fig. 2. The boundary 
conditions are also shown in that figure. 

If the same shape elements are chosen, as indicated 
on Fig. 2, the elementary matrix corresponding to the 
Galerkin integral is the same for each element. 

The computations were carried out as follows. The 
motion was postulated to be a long roll cell with normal 
axis, Ra being near the critical value of 1708. The 
computations were started by imposing a shock in 
temperature, i.e. a weak symmetrical perturbation in 
temperature to initialize the motion. The vorticity and 
streamfunction corresponding to the initial field of 
the perturbed temperature was then computed. The 
vorticity on the wall must be computed as follows : 

c2 = -a2+laY2 = -2$1/(Ar)2 (38) 

The following formula for integration [12] can be 
used : 

Is 
LaLbLC dXdY 1 2 3 

6e 

here $ i is the value of the streamfunction one grid space 
away from the wall. 

The computation is continued to convergence for 
one set of Ra and Pr numbers. It is then possible to 
increase the Rayleigh number and iterate to con- 
vergence. 

= [(a!b!c!)/(a+b+c+2)!]2A, (34) 

where Ae is the area of the triangle 6e and Li are the 
interpolating functions. 

The expression of the Galerkin integral is, for each 
triangular element, a (3 x 3) square matrix. The global 
stiffness matrix is obtained by combining these 
elementary matrices on the domain. The result to be 
solved is now a linear system. 

c,w9 = PI (35) 

where [A] is an (N x N) square matrix, and {@} is an N 
vector representing the values of temperature at every 
vertex. {B’) is determined by the boundary conditions. _ __. ~. _ .._ _._. _~~~~ _~~~ ~~~ 

9zo.5 l+f=o a% ,Q;-- 
ar2 

FIG. 2. Finite-element nrid and revised boundarv conditions. 

3.4. Streamfunction equation 
The relationship between the vorticity and stream- 

function 

v2* = -R (37) 

is a typical Poisson equation and can be solved by a 
variational formulation. 
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At every step of the computation, the temperature 
field, vorticity, streamfunction and vorticity on the 
wall were computed successively. The average Nusselt 
number at the cooled plate was calculated from a 
second-order Taylor series for temperature field. 

Nu = ’ (%@Y),=,dX 
s 0 

= 

s 
’ (-3@,+412,-@,,)/2Ar)dX. (39) 

0 

The number of iteration at every step depends on the 
grid size, the Rayleigh and the Prandtl numbers and 
varied from 15 to 150. To avoid numerical instability, 
for small grid sizes, it was necessary to use the average 
value of the two previous steps. 

5. NUMERICAL RESULTS 

Three sets of equations were used to study the in- 
fluence of the Prandtl number : (8), (9); (21), (22) and 
(23), (24). In each case, three grid sizes were used : (6 x 6), 
(10 x 10) and (14 x 14) for the higher Prandtl numbers ; 
and(10 x 10),(14x 14)and(18 x 18)for thelower ones. 

The convergence of the solution was monitored by 
the Nusselt number. For example, Fig. 3 shows the 

i 
(IO x IO) 

FIG. 3. Convergence of the Nusselt number for increasing 
Rayleigh number (Pr = 10.0, 10 x 10 divisions). 

FIG. 5. Extrapolation of Nusselt numbers to zero grid size 
(Pr = 10.0). 

variation of the Nusselt number as a function of the 
iterationnumber for Pr = lOandagridsizeof(l0 x 10). 
The increment in the Rayleigh number was 500. An 
oscillatory response can be observed before conver- 
gence. For low Prandtl numbers, a smaller Rayleigh 
number increment of 100 was required to obtain 
convergence. Figure 4 shows the response of the 
Nusselt number for Pr = 0.01 and a (18 x 18) grid 
number. 

The results for different grid sizes can be used as 
proposed by Churchill et al. [ 151 for finite differences, to 
obtain the Nusselt number to zero grid size, by plotting 
against (AT)“, where n is the order of the truncation 
error. Figures 5 and 6 show the results of this procedure 
for Pr = 10 and Pr = 0.01 and n = 2. 

Our results for Pr = 10 are compared with the 
experimental data of Silveston [16] in Fig. 7; good 
agreement is obtained particularly for the lower 
Rayleigh numbers. The numerical results and extra- 
polated values of the Nusselt number for Pr = 10 are 
summarized in Table 1. 

I 
IO loo 200 

Iteration number 

FIG. 4. Convergence of the Nusselt number for increasing Rayleigh number (Pr = 0.01, 18 x 18 divisions). 
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0 

[Af I’ 

FIG. 6. Extrapolation of Nusselt numbers to zero grid size 
(Pr = 0.01). 

Table 2 lists the computed and extrapolated values of 
the Nusselt number for Pr = 0.01, and Table 3 the 
extrapolated values of the Nusselt number for several 
Prandtl and Rayleigh numbers. These results are 
plotted in Fig. 8. Computed contours of isotherms and 
streamfunction corresponding to Ra = 3000 are in 
Figs. 9-11 for Pr = 10,O.l and 0.01, respectively. The 
grid size is (14 x 14) for all cases and the Nusselt number 
isequalto1.6871(Pr = lO,Fig.9),1.5472(Pr = O.l,Fig. 
10) and I.@03 (Pr = 0.01, Fig. II), respectively. 

5.1. Critical Rayleigh number 
The critical Rayleigh number determined was 

obtained by extrapolation of the computed values to 
the conductive state (Nu = 1) by plotting Nu- 1 vs 
l/Ra(Fig. 12) as per the correlating equation of Malkus 
and Veronis [ 171: 

Nu = 1+ B( 1 - Ra,/Ra). (40) 

The values of the critical Rayleigh number obtained 
in this way were : 

Pr = 0.003 Ra, = 2392. 

Pr = 0.01 Ra, = 2095. 

Pr = 0.025 Ra, = 1894. 

Pr = 0.1 Ra, = 1721. 

Pr = 1.0 Ra, = 1712. 

Pr = 1000. Ra, = 1709.4 

For Pr = 0.001 it was difficult to obtain convergence 

of the solution, The response, Nu vs iteration number 
(Fig. 13) indicates that Ra, is around the value 2800. 

Table I. Summary of the computed average Nussett number 
for Pr = 10 

Ra (6?6) 

2700 1.8023 
3700 2.2530 
4700 2.5509 
5700 2.7723 
6700 2.9484 
7700 3.0948 
8700 3.22Of 

10 700 3.4267 
12700 3.5929 
14700 3.7314 
19 700 4.0003 
24 700 4.2020 

Nu Nu NU 
(10x10) (14x14) (h-0) 

- 

1.6338 1.5712 1.495 
2.0076 1.9CUl8 1.895 
2.2668 2.1280 1.905 
2.4679 2.3009 2.057 
2.6334 2.4431 2.157 
2.1743 2.5647 2.235 
2.8991 2.6716 2.340 
3.1133 2.8566 2.485 
3.2942 3.0120 2.595 
3.4509 3.1489 2.750 
3.7762 3.4387 2.990 
4.0370 3.6746 3.175 

._~__ _I__________~ __ 

Table 2. Summary of the computed average Nusselt number 
for Pr = 0.01 

Ra 

2300 
2400 
2500 
2600 
2700 
2800 
2900 
3000 
3100 
3200 
3300 
3400 
3500 
3600 
3700 
3800 
3900 
4000 

(lOTlO) (14Yl4) (18718) (6rN: 0) 

.- - 1.0142 1.0359 1.067 
- 1.0360 1.0605 1.098 

1.0161 1.0555 1.0852 1.128 
1.0364 1.0798 1.1103 1.158 
1.0644 1.1060 I.1405 1.190 
1.0924 1.1293 1.1688 1.222 
1.1191 1.1616 1.9668 1.245 
1.1479 1.1903 1.2231 1.272 
1.1840 1.2177 1.2483 1.294 
1.2092 1.2441 1.2735 1.315 
1.2464 1.2713 1.2976 I.333 
1.2745 1.2986 1.3268 1.365 
1.3056 1.3246 1.3425 1.370 
1.3318 1.3498 1.3725 1.400 

- 1.3737 I.3975 1.429 
1.3978 1.4206 1.452 

__ 1.4204 1.4425 f .475 
- 1.4481 1.4642 1.492 

Table 3. Summary of the computed Nusselt numbers for 
various Prandtl numbers 

Ra 

- 

Nusselt number (at zero grid size) 
Pr = 1.0 Pr = 0.1 Pr = 0.01 Fr = 0.003 

1800 1.054 - 
2ooo 1.188 1.127 .- 
2200 1.302 1.225 - 

2300 1.350 1.273 1.062 
2400 1.396 1.319 1.096 
2500 1.453 1.363 1.128 
2600 1.487 1.403 1.156 1.038 
2700 1.551 1.442 1.190 1.054 
3ooo 1.645 1.547 1.272 
3100 _ 1.293 
3200 1.726 1.606 1.312 - 
3500 - - 1.380 
3700 1.832 1.742 I.428 

1.492 
1.856 
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FIG. 7. Comparison of predicted Nusselt number with experimental values of Silveston [16]. 

2- 

1.9- 

I.6 - 

1.7- 
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s 

FIG. 8. Influence of Prandtl number on Nusselt number. 

5.2. Correlating equations for the critical Rayleigh 
number and the heat transfer rate 

A correlating equation developed by Churchill and 
Usagi [18] was used to generalize the dependence of the 
critical Rayleigh number on the Prandtl number. The 

theoretical value 1708 was used as the asymptote for 
large Pr and C/Pf’ for Pr -+ 0 with C and b obtained 
from the values of Ra at Pr = 0.01 and Pr = 0.003. 

The correlating equation 

(Ra,)” = (C/Pr’l)” + (1708) (41) 

with C = 1262 and b = 0.11 was found to best 
represent the data with n = 28, yielding 

(RaJ2s = (1262/Pr0.‘1)2s +(1708)2s. (42) 

Table 4 provides a comparison of the computed 
values with this correlating equation. The results are 
also plotted in Fig. 14. 

Equation (42) gives a value of Ra, = 1708 for air (Pr 
= 0.7) and 1897 for mercury (Pr = 0.025). This latter 
value is higher than the experimental value of 1808 f 16 
obtained by Verhoeven [4], but within the range 
observed by Soberman [S]. 

It is also possible to give a correlating equation for 
the heat transfer rate near the critical state with using 
the critical Rayleigh number. The correlating equation 
can be based on the equation of Malkus and Veronis 
[17] as shown in equation (40). The constant B is a 
function of Prandtl number and can be determined 
from computed data as a gradient of each curve as 
shown in Fig. 12. These values are fitted again by a 
correlating equation of Churchill and Usagi [ 183. The 
same method as above gives 

(B)-’ = (1.336)-5 +(Pr0.312/0.317)-5. (43) 

FIG. 9. Computed contours of isotherms and streamfunction at Ra = 3000 and Pr = 10. 
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FIG. 10. Computed contours of isotherms and streamfunction at Ra = 3000 and Pr = 0.1. 

FIG. 11. Computed contours of isotherms and streamfunction at Ra = 3000 and Pr = 0.01. 

0 Cunputed values 

I /Ro x 10,000 

FIG. 12. Determination of critical Rayleigh number for 
different Prandtl numbers using the equation of Malkus and 

Veronis. 

The corresponding values are reported in Table 5 and 
plotted in Fig. 15. 

6. CONCLUSIONS 

Convergent solutions of two-dimensional natural 
convection in a horizontal fluid layer between two rigid 
walls heated from below and cooled from above were 
obtained by the finite-element method. 

The computations for Pr = 10, agreed well with 
prior experimental data even for Rayleigb numbers as 
high as 25 000. 

An extrapolation permitted the determination of the 
critical value of Rayleigh number for low values of Pr. 

Table 4. Comparison of the computed critical Rayleigh numbers with other results 

0.001 0.003 0.01 
Pr 

0.025 0.1 1.0 1000.0 

Ra, computed < 2800.0 2392.0 2095.0 1894.0 1721.0 1712.0 1709.0 

Ra, by equation (42) 2698.0 2391 .O 2094.0 1897.0 1722.0 1708.0 1708.0 

Experimental data [4] 1808& 16 1708.0 1708.0 

Ra, C71 2242.0 1833.0 1720.0 1708.0 1708.0 

Table 5. Comparison of the computed constant B with that by correlating equation (43) 

0.003 0.01 
Pr 

0.025 0.1 1.0 looo.o 

B computed 0.480 0.750 0.950 1.210 1.330 1.336 
B by equation (43) 0.514 0.741 0.957 1.233 1.332 1.336 
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Pr - 0.001 hb =2800 (18x18) 

FIG. 13. Nusselt number vs iteration number (Pr = 0.001, 18 x 18 divisions). 

c 

~1706)** + (1262/FT”“)“8= (Ro,)‘* 

q Expenmental results 

o Computed values 

1700- ,706_---___ 

I I I 
0.00 I 0.0 I 0. I I 

PI- 

FIG. 14. Correlating equation for critical Rayleigh number: critical Rayleigh number vs Prandtl number. 

o Computed values 

0 I I I I I 
aca 0003 0.0 I 0.025 0.1 I I 

Pr 

FIG. 15. Correlating equation for Nusselt number near critical state. The constant B, as a function of Prandtl 
number, corresponds to the equation of Malkus and Veronis. 
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ETUDE NUMERIQUE PAR LES ELEMENTS FINIS DE LA CONVECTION NATURELLE 
BIDIMENSJONNELLE DANS UNE COUCHE FLUIDE HORIZONTALE CHAUFFEE PAR 

LE BAS: INFLUENCE DU NOMBRE DE PRANDTL 

R&sum-La convection naturelle dans une couche fluide horizontale chauff&e par les bas et refroidie par le 
haut est trait&e par une m&hode d’&ments finis utilisant une approche Galerkin. Dans le cas Pr = 10, le 
nombre de Nusselt, obtenu par une extrapolation 6 la taille d%lement nulle, s’accorde bien avec les don&es 
exp&imentales de Silveston [Forsch. Ing. 24,54-69 (193511, pour un domaine de nombres de Rayleigh depuis la 
valeur critique jusqu’8 25 OGO. Pour les nombresde Prandtl variant deO,OOl I 1000, les solutions permanentes 
des transferts thermiques et des nombres de Rayleigh critiques sont calculCs. On propose une tquation du 
nombre de Rayleigh en fonction du nombre de Prandtl. Utilisant l’kquation de Malkus et Veronis [J. Fluid 
Mech. 4,225-260( 195311, il est possible de calculer le flux de chaleur pr&s de l’Ctat critique pour chaque nombre 

de Prandtl sup&ieur B 0,001. 

NUMERISCHE UNTERSUCHUNG DER ZWEIDIMENSIONALEN NATURLICHEN 
KONVEKTION IN EINER VON UNTEN BEHEIZTEN HORIZONTALEN FLUIDSCHICHT 

MIT DER METHODE DER FINITEN ELEMENTE: EINFLUSS DER PRANDTL-ZAHL 

Zusammenfaasung-Die zweidimensionale natiirliche Konvektion in einer von unten beheizten und von oben 
aekiihlten ho~zont~en Fluids~hi~ht wurde mit einer Methode der finiten Elemente unter Anwendung einer 
~~erkin-N~e~ng berechnet. Fiir Pr = 10 und Rayleigh-Zahien im Bereich vom kritischen Wert bis zu 
25000 stimmt die durch Extrapolation der ElementgrijBe auf Null erhaltene Nusselt-Zahl sehr gut mit den 
experimentellen Daten von Silveston [Forsch. Ing. 24,59-69 (1985)] iiberein. Fiir Prandtl-Zahlen von 0,001 
bis loo0 wurden stationire Lijsungen fiir Konvektion, Wiirmestriime und kritische Rayleigh-Zahlen 
berechnet. Eine Korrelationsgleichung fiir die kritische Rayleigh-Zahl wurde als Funktion der Prandtl-Zahl 
vorgeschlagen. Mit Hilfe der Korrelations-Gleichung von Malkus und Veronis [J. Fluid Mech. 4,225-260 
(195311 war es miiglich, den Wtiestrom nahe des kritischen Zustandes fiir Prandtl-Zahlen griil3er als 0,001 

zu berechnen. 
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YMCJIEHHOE HCCJIEflOBAHkiE METOAOM KOHEgHbIX ZUIEMEHTOB IIJIOCKOL? 
ECTECTBEHHOB KOHBEKqMM B 1-OPki30HTAJIbHOM CJIOE JKMflKOCTM, 

HAI-PEBAEMOM CHM3Y. BJ-lklflHRE YHCJIA IIPAHATJIJI 

AHHoTaUHa-tiTecTseHHar KOHBCZKUAR B rOpA30HTanbHOM CJlOe XWilKOCTli, HarpeBaeMOM CHH3y B 

OXnaXWaeMOM CBepXy, paCCWTblBaeTCH MeTODOM KOHe'iHbIX 3neMeHTOB C HCIIOnb30BaHHeM MeTOL,a 

ranepnsea. B cnyrae f’r = 10 wcno HyCCeJIbTa, nonyqemoe 3Kcrpanonxulieii K H~JIIO pamepa sne- 
MeHTa, XOpOUIO COrJIaCyeTCK C 3KCnepBMeHTanbHbIMU J,aHHbIMA CElnbBeCTOHa LlnR “Il3pOKOrO jlHia”a- 

30Ha WCen P3neK OT KpIITWieCKOrO3Ha'ieHEiII A0 25000. mfl 'iIiCen ~paHATnK,H3MeHKloU,HXCZ3 OT 0,001 
A0 loo&IIOny'ieHbI CTaLWOHapHbIe peUleHHir AJIK CTpyKTypbI KOHBeKULi&i,KO3@&iULieHTbI TeIInOO6MeHa 

u Kpmmecwie wcna Psnea. lIpemoxeH0 coomomemie nnn pameTa KpemqecKoro wicna FYinen B 
3aBHCfiMOCTR OT YNCna npaHnTnK. C nOMOUlbH) KOppenSIUAA ManKyca H BepoHuca OKa3anOCb BO~MO~- 


