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Abstract—Natural convection in a two-dimensional horizontal fluid layer heated from below and cooled from
above was computed by a finite-element method using a Galerkin approach. In the case of Pr = 10 the Nusselt
number, obtained by an extrapolation to zero element size, agreed well with the experimental data of Silveston
[Forsch. Ing. 24, 59-69 (1958)], for a range of Rayleigh numbers from the critical value up to 25,000. For the
Prandtl numbers varying from 0.001 to 1000, steady-state solutions for convection, heat transfer rates and the
critical Rayleigh numbers were computed. A correlating equation for critical Rayleigh number as a function of
Prandtl number was proposed. Using the correlating equation of Malkus and Veronis [J. Fluid Mech. 4,225~
260 (1958)], it was possible to compute the heat transfer rate near the critical state, for every Prandt! number
higher than 0.001.
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1. INTRODUCTION

AFTER the works by Bénard and Rayleigh, there are
many studies dealing with the critical condition for the
onset of instability in an horizontal layer of fluid of
infinite extent heated from below.

The width of the roll cellin an infinite horizontal fluid
layer between two rigid walls, heated from below and
cooled from above has been studied by a number of
papers [1]. However, there appears to be no definitive
agreement on the stable width of a roll cell. Linear
stability analysis at infinite Prandtl number suggests
the critical wave number a, = 3.117, which indicates a
square roll cell. Ozoe et al. [2] reported numerical
calculations with various roll widths but no definitive
conclusion can be drawn on the stable width of a roll
cell. In accordance with experimental observations [3]
the motion of fluid, just above the critical state, is
postulated to be a series of identical square roll cells
with parallel axes. In that case, the theoretical value for
the critical Rayleigh number is 1707.8.

When the Prandtl number becomeslow, less than 0.1,
say, the non-linear inertial terms can not be neglected.
In that case, natural convection is known to depend on
the Prandtl number, Pr, as well as on the Rayleigh
number, Ra. There have been only a few experimental
investigations dealing with the determination of the
critical Rayleigh number Ra, for low Prandtl number.
Such low values occur only for liquid metals such as
mercury (Pr = 0.025) and sodium, and in astrophysical
applications. Experiments with these fluids are very
difficult to perform, but some results are available for
mercury. Verhoeven [4] determined a value of 1808
+ 16 for the critical Rayleigh number of mercury in a
cylinder. Soberman [5] observed critical Rayleigh
numbers as high as 2000 and as low as 1200 for mercury.
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For the dependence of the critical Rayleigh number
on the Prandtl number, Samels and Churchill
[6] developed finite-difference solutions for two-
dimensional natural convection in long, rectangular
channels heated from below. Their computed results
indicate a dependence on Pr for Pr less than 0.1, and
their plots of the Nusselt number Nu vs Ra for different
Pr extrapolate to different values of Ra,. Chao et al.
[7] carried out finite-difference computations for the
dependence of the critical Rayleigh number on the
Prandtl number and correlated their results with
the expression

Ra, = 1707.8[1+(0.00717/Pr)*3]%/5, M

In the present work, the finite-element method was
used to compute natural convection in a horizontal,
infinite layer of fluid heated from below and cooled
from above. First, the rate of heat transfer was in-
vestigated for the Rayleigh numbers up to 25000 with
a Prandtl number of 10, and then the influence of the
Prandtl number over the range of 0.001 to 1000, on the
critical Rayleigh number.

2. MATHEMATICAL MODEL

An infinitely long, two-dimensional roll cell with a
square cross section [3], was postulated, as shown in
Fig. 1. The equations for the conservation of mass,
momentum and energy were accordingly expressed as
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NOMENCLATURE
a, critical wave number u velocity in x-direction
[4] matrix (N x N) U dimensionless velocity
[A7] matrix (N x N) v velocity in y-direction
B constant (Malkus and Veronis vV dimensionless velocity
equation) x horizontal coordinate
{B} RHS vector X dimensionless coordinate
b exponent (correlating equation) y vertical coordinate
C constant (correlating equation) Y dimensionless coordinate.
C, specific heat
Gr Grashof number, Ra/Pr Greek symbols
g acceleration due to gravity o thermal diffusivity
H height and width of roll cell B thermal coefficient expansion
k thermal conductivity de triangular element
L1, L2, L3 interpolating functions A, area of element de
Nu Nusselt number AT temperature difference, T, — T,
N total number of node points Ar grid size
{N1} cardinal basis U viscosity
{N1}' transpose of {N1} v kinematic viscosity
n exponent (correlating equation) p density
P pressure Po density at T,
Pr Prandtl number, v/o 0 temperature perturbation
Ra Rayleigh number v dimensionless streamfunction
Ra, critical Rayleigh number 0] dimensionless temperature
T temperature Q dimensionless vorticity.
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The well-known Boussinesq approximation is
employed, ie. that physical properties are constant

except for the density p in the buoyancy term, which is
assumed to vary with temperature only according to
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FIG. 1. Physical geometry and boundary conditions.

where

g = —[1 (ap/an] )
4 To
is the coefficient for thermal expansion.

Taking the cross derivatives of the two equations of
motjon and subtracting to eliminate the pressure term,
then, after dedimensionalizing, introducing the stream-
function and vorticity gives
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Here ©, Q, U, V, X and Y are the non-
dimensionalized values for temperature, vorticity and
components of the velocity, and X and Y are the
coordinates.

Also ) ,
| 4 U

Q=_V2¢=§_5~17 (10)

where y is the streamfunction
U=20ay/dY and V= —ay/oX (11

also

Pr = v/o (Prandtl number) (12)
Ra = C,p3H>¢BAT/uk (Rayleigh number) (13)
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O =(T-T)AT, T,=(T,+T,)2. (14)

The revised boundary conditions are
X=01: y=Q=0; 0P/dX =0 (15)
Y=0: y=0;, Q= -9U/0Y; ®=—-1/2 (16)

Y=1:. y=0; Q=-09U/0Y; ®&=1/2. (17
The vorticity on the wall can be computed from the
streamfunction as follows:

Q= —8U/0Y = —8%y/oY>. (18)

For alow Prandtl number, the temperature profile is
expected to be nearly linear. Therefore the temperature
can be assumed to be the sum of a conduction term and
a perturbation term as per Chandrasekhar [1]:

=0 +0 (19)

where
@, = Y—0.5 (profile due to conduction only) (20)

and #is a perturbation of the temperature from the state
of pure conduction.

Next an equation employed by Chao et al. [7] was
used to study the influence of a low Prandtl number.
The perturbation for temperature yields the following
set of equations:

1 (5% % B o
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where Gr = Ra/Pr, is the Grashof number.

However, this formulation did not yield a convergent
result for Pr less than 0.01 and a formulation which
yielded the following alternative set of equations was
employed:
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The boundary conditions on the perturbation of the

temperature correspond tono perturbation on the wall,
ie.

260 08 o6
i )_ U

(24)

Y=0, 1-6=0. (25)

3. FINITE-ELEMENT FORMULATION

Most of the investigations of convection with the
finite-element method deal with two-dimensional
motion in a rectangular channel heated on one vertical
wall and cooled on the opposing wall. As a first try,
the equations (8) and (9) were interpreted as Poisson
equations after Tabarrok and Lin [8] for the vertical
configuration, and Ozoe et al. [9] for the horizontal
one. Both of these investigations used a variational
method to solve the problem with the convective term
being approximated by its value at the gravitational
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center of each element. Their results were limited to
Rayleigh numbers less than 3000 for the horizontal
configuration.

Since equations (8) and (9) are nonlinear, an exact
variational formulation corresponding to this kind of
equation is not possible.

There are several possible methods of solving these
equations. The popular schemes are those of the
weighted residuals with least squares, collocation
method and the Galerkin method. Ikenouchi et al. [10]
used the Galerkin method to solve the Navier-Stokes
equations, and more recently Moult et al. [11] solved
several two-dimensional steady flow problems by the
Galerkin method.

3.1. Method of weighted residuals

The Galerkin approach was used in the present
investigation. Detailed explanations of the use of this
method in fluid mechanics are given in books such as
Zienkiewicz [12], Chung [13] and Baker [14].

3.2. Energy equation
Equation (8) yields the following Galerkin integral :

*o 7’0
J L oree (-

v T

oo
(5). 4

o0
V— =
+ aY)dXdY 0 (26)

where { W(X, Y)}is a complete, linearly independent set
of weighting functions.

The temperature, vorticity and streamfunction can
be approximated as the product of a shape function and
the nodal values:

O(X, Y) = {N1(X, )}{®}, @7)
Q(X, Y) = {N1(X, )}H{Q), (28)
(X, Y) = {NI(X, V)}{¥}. (29)

where {N1(X,Y)} is a (1x3) row matrix of the
interpolating function for each triangular element
(shape function). {®},, {Q}, and {y}, are the values of
the temperature, vorticity and streamfunction at the
vertices of the element.

The details of the calculation and derivation of
the shape functions {N1(X,Y)} can be found in
Zienkiewicz [12] and Baker [14].

It is possible to substitute the set of shape functions
for the set of weight functionsin the Galerkin integral of
equation (26)

%0 %o
J‘Le {NI(X, Y)}(—W—W-f- U

B
+Va—Y) dXdY =0 (30)

o0
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The Green—Gauss theorem is used to transform the
second derivatives:

82
J L e {N1(X, )} = dX dY

3{NI(X,Y)} 00
‘Hf—‘ax 2 axa

+§ {NI(X,Y)}Z—;da (31)

The boundary conditions (® = constant or 4®/
0X = 0), require the second integral of the RHS to
vanish identically on the boundaries. In consequence,
the Galerkin integral becomes

f j ({Nl}va{"’”' (@ + vy 20 g,

aNYy a{N1}' Ny 6{N1}‘
R 0y, + DL AR (0,

x dX dY = {0}.

(32)

The values of U and V are considered to be constant
on each element. Of course it is possible to consider the
velocity components in terms of the streamfunction,
but that requires the solution of a nonlinear system.
In consequence, schemes such as that of Newton and
Raphson, which makes the solution scheme much more
complicated, are required.

Consider one term of the Galerkin integral :

J L <{N1}U a{;v;}' {qa}e) dx dY

—U J Le (N1} a{év;}* (@), dxdY (33)

{N1(X,Y)}isa(l x 3)row matrix, {N1(X, Y)}'/0X isa
(3 x 1) line matrix and the product is a (3 x 3) square
matrix.

The following formula for integration [12] can be
used :

Jf L5315 dX dY
e

= [(a'b!c)(a+b+c+2)124,

where A, is the area of the triangle de and Li are the
interpolating functions.

The expression of the Galerkin integral is, for each
triangular element, a (3 x 3) square matrix. The global
stiffness matrix is obtained by combining these
elementary matrices on the domain. The result to be
solved is now a linear system.

[4]{®} = {B}

where [A]is an (N x N) square matrix, and {®}isan N
vector representing the values of temperature at every
vertex. { B'} is determined by the boundary conditions.

(34)

(35)
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3.3. Equation for vorticity transport

The same method is used for the vorticity transport
equation as for the energy equation.

The temperature gradient in the equations (9), (22)
or (24) is considered as a constant in every step. In
consequence, a linear system is obtained

[47{Q} = {B} (36)

where {B} on the RHS is a function of the temperature
gradient.

3.4. Streamfunction equation
The relationship between the vorticity and stream-
function

Vi = —Q (37)

is a typical Poisson equation and can be solved by a
variational formulation.

4. FINITE-ELEMENT ALGORITHM

The square cross-section of the roll cell is divided into
anumber of triangles as shown in Fig. 2. The boundary
conditions are also shown in that figure.

If the same shape elements are chosen, as indicated
on Fig. 2, the elementary matrix corresponding to the
Galerkin integral is the same for each element.

The computations were carried out as follows. The
motion was postulated to be along roll cell with normal
axis, Ra being near the critical value of 1708. The
computations were started by imposing a shock in
temperature, i.e. a weak symmetrical perturbation in
temperature to initialize the motion. The vorticity and
streamfunction corresponding to the initial field of
the perturbed temperature was then computed. The
vorticity on the wall must be computed as follows:

Q= —3%/aY? = — 2y, /(Ar)? (38)

here ), is the value of the streamfunction one grid space
away from the wall.

The computation is continued to convergence for
one set of Ra and Pr numbers. It is then possible to
increase the Rayleigh number and iterate to con-
vergence.

s
[—‘X ¢-05 y-o  ° ar?
14
y=0
y=0
3 P
5:0 5-0
° Q-0
2
, . Yy
$:05 y=0 Q-3

Fi1G. 2. Finite-element grid and revised boundary conditions.
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At every step of the computation, the temperature
field, vorticity, streamfunction and vorticity on the
wall were computed successively. The average Nusselt
number at the cooled plate was calculated from a
second-order Taylor series for temperature field.

1
Nu= J (0®/0Y)y_odX

o}

= J 1 (= 3D, +4Q,, — D,4,)2Ar) dX. (39)

0
The number of iteration at every step depends on the
grid size, the Rayleigh and the Prandtl numbers and
varied from 15 to 150. To avoid numerical instability,
for small grid sizes, it was necessary to use the average
value of the two previous steps.

5. NUMERICAL RESULTS

Three sets of equations were used to study the in-
fluence of the Prandtl number: (8), (9); (21), (22) and
(23),(24).In each case, three grid sizes were used : (6 x 6),
(10 x 10) and (14 x 14) for the higher Prandtl numbers;
and (10 x 10), (14 x 14) and (18 x 18) for the lower ones.

The convergence of the solution was monitored by
the Nusselt number. For example, Fig. 3 shows the

Pr=10
(10 x 10)

, 10200

50
| 1
100 150

Iterations

FiG. 3. Convergence of the Nusselt number for increasing
Rayleigh number (Pr = 10.0, 10 x 10 divisions).
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FiG. 5. Extrapolation of Nusselt numbers to zero grid size
(Pr = 10.0).

variation of the Nusselt number as a function of the
iteration number for Pr = 10and a grid size of (10 x 10).
The increment in the Rayleigh number was 500. An
oscillatory response can be observed before conver-
gence. For low Prandtl numbers, a smaller Rayleigh
number increment of 100 was required to obtain
convergence. Figure 4 shows the response of the
Nusselt number for Pr = 0.01 and a (18 x 18) grid
number.

The results for different grid sizes can be used as
proposed by Churchill et al. [15] for finite differences, to
obtain the Nusselt number to zero grid size, by plotting
against (Ar)", where n is the order of the truncation
error. Figures 5 and 6 show the results of this procedure
for Pr = 10and Pr =00t andn=2.

Our results for Pr = 10 are compared with the
experimental data of Silveston [16] in Fig. 7; good
agreement is obtained particularly for the lower
Rayleigh numbers. The numerical results and extra-
polated values of the Nusselt number for Pr = 10 are
summarized in Table 1.

13 4
+
2k R0 =2900 |
3100 2800 ! '
| [}
3000 | 2700 |
|
I ]
2 |2 = ' 2600}
[ !
2500 ! Pre102
2400 ! ' (18 x 18}
[}
] T
, 2300 |
1 )
2200,
) l 1 | ]
10 50 100 150 200

Iteration number

F1G. 4. Convergence of the Nusselt number for increasing Rayleigh number (Pr = 0.01, 18 x 18 divisions).
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Table 2lists the computed and extrapolated values of
the Nusselt number for Pr = 0.01, and Table 3 the
extrapolated values of the Nusselt number for several
Prandtl and Rayleigh numbers. These results are
plotted in Fig. 8. Computed contours of isotherms and
streamfunction corresponding to Ra = 3000 are in
Figs. 9-11 for Pr = 10, 0.1 and 0.01, respectively. The
grid sizeis (14 x 14)for all cases and the Nusselt number
isequalto 1.6871(Pr = 10,Fig.9),1.5472(Pr = 0.1, Fig.
10) and 1.1903 (Pr = 0.01, Fig. 11), respectively.

5.1. Critical Rayleigh number

The critical Rayleigh number determined was
obtained by extrapolation of the computed values to
the conductive state (Nu = 1) by plotting Nu—1 vs
1/Ra(Fig. 12)as per the correlating equation of Malkus
and Veronis [17]:

Nu = 1+ B(1—Ra_/Ra). (40)

The values of the critical Rayleigh number obtained
in this way were:

Pr = 0.003 Ra, = 2392
Pr =001 Ra, = 2095
Pr=0025 Ra, = 1894,
Pr=01 Ra, = 1721
Pr=10 Ra, = 1712
Pr = 1000. Ra, = 17094

For Pr = 0.001 it was difficult to obtain convergence
of the solution, The response, Nu vs iteration number
(Fig. 13) indicates that Ra, is around the value 2800.

Table 1. Summary of the computed average Nusselt number

for Pr = 10
Nu Nu Nu Nu
Ra (6 x6) (10x10) (14x14) (Ar-0)
2700 1.8023 1.6338 1.5712 1.495
3700 22530 2.0076 1.9008 1.895
4700 2.5509 2.2668 2.1280 1.905
5700 27723 24679 2.3009 2.057
6700 29484 2.6334 2.4431 2.157
7700 3.0948 2.7743 2.5647 2.235
8700 3.2201 2.8991 26716 2.340
10700 3.4267 3.1133 2.8566 2485
12700 3.5929 3.2942 3.0120 2.595
14700 3.7314 3.4509 3.1489 2.750
19700 4.0003 3.7762 3.4387 2.990
24700 4.2020 4.0370 3.6746 3.175

Table 2. Summary of the computed average Nusselt number

for Pr = 0.01
Nu Nu Nu Nu
Ra (10x10) (14x14) (18x18) (Ar—>0)
2300 - 1.0142 1.0359 1.067
2400 — 1.0360 1.0605 1.098
2500 1.0161 1.0555 1.0852 1.128
2600 1.0364 1.0798 1.1103 1.158
2700 1.0644 1.1060 1.1405 1.190
2800 1.0924 1.1293 1.1688 1.222
2900 1.1191 1.1616 1.9668 1.245
3000 1.1479 1.1903 1.2231 1.272
3100 1.1840 12177 1.2483 1.294
3200 1.2092 1.2441 1.2735 1.315
3300 1.2464 1.2713 1.2976 1333
3400 1.2745 1.2986 1.3268 1.365
3500 1.3056 1.3246 1.3425 1.370
3600 1.3318 1.3498 1.3725 1.400
3700 — 1.3737 1.3975 1.429
3800 e 1.3978 1.4206 1.452
3900 1.4204 1.4425 1.475
4000 — 1.4481 1.4642 1.492

Table 3. Summary of the computed Nusselt numbers for
various Prandtl numbers

Nusselt number (at zero grid size)

Ra Pr=10 Pr=01 Pr=001 Pr=0003
1800 1.054 — — —
2000 1.188 1.127 — ~
2200 1.302 1.225 — -
2300 1.350 1.273 1.062 —
2400 1.396 1.319 1.096 -
2500 1.453 1.363 1.128
2600 1.487 1.403 1.156 1.038
2700 1.551 1.442 1.190 1.054
3000 1.645 1.547 1.272
3100 — - 1.293 -
3200 1.726 1.606 1.312 —
3500 — — 1.380 —
3700 1.832 1.742 1.428 —
4000 — — 1.492 o
4200 1.923 1.856 — -—
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FiG. 7. Comparison of predicted Nusselt number with experimental values of Silveston [16].
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Fi1G. 8. Influence of Prandtl number on Nusselt number.

5.2. Correlating equations for the critical Rayleigh
number and the heat transfer rate

A correlating equation developed by Churchill and
Usagi [18] was used to generalize the dependence of the
critical Rayleigh number on the Prandtl number. The

e

theoretical value 1708 was used as the asymptote for

large Pr and C/Pr® for Pr — 0 with C and b obtained

from the values of Ra at Pr = 0.01 and Pr = 0.003.
The correlating equation

(Ra.y" = (C/Pr")"+(1708)" 1)

with C = 1262 and b=0.11 was found to best
represent the data with n = 28, yielding

(Ra,)?® = (1262/Pr%11)?8 4 (1708)*®. 42)

Table 4 provides a comparison of the computed
values with this correlating equation. The results are
also plotted in Fig. 14.

Equation (42) gives a value of Ra, = 1708 for air (Pr
= (.7) and 1897 for mercury (Pr = 0.025). This latter
valueis higher than the experimental value of 1808 + 16
obtained by Verhoeven [4], but within the range
observed by Soberman [5].

It is also possible to give a correlating equation for
the heat transfer rate near the critical state with using
the critical Rayleigh number. The correlating equation
can be based on the equation of Malkus and Veronis
[17] as shown in equation (40). The constant B is a
function of Prandtl number and can be determined
from computed data as a gradient of each curve as
shown in Fig. 12. These values are fitted again by a
correlating equation of Churchill and Usagi [18]. The
same method as above gives

(B)™5 = (1.336) 5 +(Pr*312/0.317)"%.  (43)

FiG. 9. Computed contours of isotherms and streamfunction at Ra = 3000 and Pr = 10.
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F1G. 10. Computed contours of isotherms and streamfunction at Ra = 3000 and Pr = 0.1.

0

Q

Fi1G. 11. Computed contours of isotherms and streamfunction at Ra = 3000 and Pr = 0.01.

osof- o er 7\ o Computed values
|
1000
Y 025 Pi
4 025 .
3 (4
00l
0003 \
O\O\\ |
oL % 5

1/Ra x 10,000

FiG. 12. Determination of critical Rayleigh number for
different Prandtl numbers using the equation of Malkus and
Veronis.

The corresponding values are reported in Table 5 and
plotted in Fig. 15.

6. CONCLUSIONS

Convergent solutions of two-dimensional natural
convection in a horizontal fluid layer between two rigid
walls heated from below and cooled from above were
obtained by the finite-element method.

The computations for Pr = 10, agreed well with
prior experimental data even for Rayleigh numbers as
high as 25 000.

An extrapolation permitted the determination of the
critical value of Rayleigh number for low values of Pr.

Table 4. Comparison of the computed critical Rayleigh numbers with other results

Pr
0.001 0.003 0.01 0.025 0.1 1.0 1000.0
Ra, computed <2800.0 23920 2095.0 1894.0 1721.0 1712.0 1709.0
Ra, by equation (42) 2698.0 2391.0 20940 18970 17220 17080  1708.0
Experimental data [4] 1808416 17080  1708.0
Ra, [7] — — 22420 18330 17200 17080  1708.0

Table 5. Comparison of the computed constant B with that by correlating equation (43)

Pr
0.003 0.01 0.025 0.1 1.0 1000.0
B computed 0.480 0.750 0.950 1.210 1.330 1.336
B by equation (43) 0.514 0.741 0.957 1.233 1.332 1.336
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For such low Prandtl numbers, the viscosity of the fluid
is very small and the results obtained correspond to a
very large Grashof number, i.e. a very high temperature
gradient and high rate of circulation.

Correlating equations were developed for these
results, permitting the computation of Nusselt num-
bers near the critical Rayleigh number for Prandtl
numbers as low as 0.001.
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ETUDE NUMERIQUE PAR LES ELEMENTS FINIS DE LA CONVECTION NATURELLE
BIDIMENSIONNELLE DANS UNE COUCHE FLUIDE HORIZONTALE CHAUFFEE PAR
LE BAS: INFLUENCE DU NOMBRE DE PRANDTL

Résumé— La convection naturelle dans une couche fluide horizontale chauffée par les bas et refroidie par le
haut est traitée par une méthode d'éléments finis utilisant une approche Galerkin. Dans le cas Pr = 10, le
nombre de Nusselt, obtenu par une extrapolation 3 la taille d’élement nulle, s’accorde bien avec les données
expérimentales de Silveston [Forsch. Ing. 24, 54-69 (1935)], pour un domaine de nombres de Rayleigh depuisia
valeur critique jusqu’a 25 000. Pour les nombres de Prandtl variant de 0,001 & 1 000, les solutions permanentes
des transferts thermiques et des nombres de Rayleigh critiques sont calculés. On propose une €équation du
nombre de Rayleigh en fonction du nombre de Prandtl. Utilisant ’équation de Malkus et Veronis [J. Fluid
Mech.4,225-260(1953)], il est possible de calculer le flux de chaleur prés de état critique pour chaque nombre
de Prandtl supérieur a 0,001.

NUMBERISCHE UNTERSUCHUNG DER ZWEIDIMENSIONALEN NATURLICHEN
KONVEKTION IN EINER VON UNTEN BEHEIZTEN HORIZONTALEN FLUIDSCHICHT
MIT DER METHODE DER FINITEN ELEMENTE: EINFLUSS DER PRANDTL-ZAHL

Zusammenfassung — Dic zweidimensionale natiirliche Konvektion in einer von unten beheizten und von oben
gekiihlten horizontalen Fluidschicht wurde mit einer Methode der finiten Elemente unter Anwendung einer
Galerkin-Niherung berechnet. Fiir Pr = 10 und Rayleigh-Zahlen im Bereich vom kritischen Wert bis zu
25000 stimmt die durch Extrapolation der ElementgréBe auf Null erhaltene Nusselt-Zahl sehr gut mit den
experimentellen Daten von Silveston [Forsch. Ing. 24, 5969 (1985)] {iberein. Fiir Prandtl-Zahlen von 0,001
bis 1000 wurden stationdire Losungen fiir Konvektion, Wirmestrome und kritische Rayleigh-Zahlen
berechnet. Eine K orrelationsgleichung fiir die kritische Rayleigh-Zahl wurde als Funktion der Prandtl-Zahl
vorgeschlagen. Mit Hilfe der Korrelations-Gleichung von Malkus und Veronis [J. Fluid Mech. 4, 225-260
(1953)] war es moglich, den Wiirmestrom nahe des kritischen Zustandes fiir Prandtl-Zahlen groBer als 0,001
zu berechnen.
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YUCJIEHHOE UCCJEJOBAHME METOJIOM KOHEYHBIX 3JIEMEHTOB ITJIOCKON
ECTECTBEHHOI KOHBEKLINM B TOPU3OHTAJILHOM CJIOE XUJKOCTH,
HATPEBAEMOM CHMW3Y. BIUAHUE YUUCIIA TTPAHOTIA

Annoranms—EcTecTBeHHAsT KOHBEKLMS B TOPH3OHTAJILHOM CJIO€ JXKHIKOCTH, HarpeBacMOM CHH3Y H
OXJIAXIAEMOM CBEpXY, PAaCCYXTHIBAETCS METONOM KOHEYHBIX JJIEMEHTOB C HCNOJIL30BAHUEM MeTOHda
Tanepkusa. B cnyyae Pr = 10 uucino HyccenbTa, MoJyqeHHOE 3KCTpANoJsLMERd K HYJIFO pa3Mmepa Jie-
MEHTa, XOpOLUO COIJIacyeTcs ¢ 3KCIEPHMMEHTAIbHBIMA AaHHbIMH CHIIbBECTOHA /IS LIMPOKOro auana-
30Ha 4uces Panes ot xpuTHdeckoro 3HayeHus 1o 25000. Jia uucen [Mpanartns, uamenstomuxcs ot 0,001
o 1000, mosy4eHsl CTalMOHAPHBIE PEILECHHS AT CTPYKTYPbl KOHBEKLMH, KO3QHUIHEHTH TeI000MEHa
U KpuTHYeckue uucia Pajes. IIpemnoxeHo COOTHOIUEHHE JUIS pacyeTa KPHTHYECKOro uucna Pajes B
3aBUCHMOCTH oT uncaa IMpanaras. C nomolubio koppensuun Mankyca u Beponuca okazanoch BO3MOX-
HBIM HalTH K03 dunueHT TenIoo6MeHa BOIN3M KPUTHHECKOTO 3HAYeHUs yucia Panes.
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